in which the fact that $\mathrm{d} \ln k_{J} / \mathrm{d} \ln V=-\frac{1}{3}$, $\mathrm{d} \ln \varrho / \mathrm{d} \ln V=-1$ has been used. The Slater gamma gives reasonably good agreement with Gruneisen's gamma at high temperatures, having in general a value larger than γ_{G} as shown in Table 1. Notable exceptions are silicon, germanium and the zinc blende structure materials where $\gamma_{s} \geqslant \gamma_{G}$.

GENERAL ACOUSTIC CONTINUUM GAMMAS

Recent acoustic measurements of all of the elastic constants of crystals as a function of pressure ${ }^{(3)}$ permits one to relax several of the assumptions made above, namely the assumption of elastic isotropy and that of pressure independence of Poisson ratios. That is, referring again to Fig. 1, the slope of any dispersion curve in the continuum region which is the velocity of
sound for waves of that mode type, is given by $v=\sqrt{\frac{C}{\varrho}}$ where C is the adiabatic elastic constant associated with the type of deformation involved in propagation of the wave. For example, the velocity of a longitudinal wave propagation along [100] of a cubic crystal is given by $\left(C_{11} / \varrho\right)^{\frac{1}{2}}$, that of a similarly propagating transverse wave is given by $\left(C_{44} / \varrho\right)^{\frac{1}{2}}$ and the mode gammas appropriate to each of these modes become:

$$
\begin{aligned}
& \gamma_{L}[100]=-\frac{1}{2} \frac{\mathrm{~d} \ln C_{11}}{\mathrm{~d} \ln V}-\frac{1}{6}, \\
& \gamma_{T}[100]=-\frac{1}{2} \frac{\mathrm{~d} \ln C_{44}}{\mathrm{~d} \ln V}-\frac{1}{6} .
\end{aligned}
$$

(The relation to the pressure derivatives is

Fig. 1. Dispersion curve indicating the effect of pressure on a normal mode frequency.

Table 2. Values of mode gammas in symmetry directions of cubic crystals, together with their weighting factors v^{-3} for low temperatures. v^{-3} in units $10^{-18}(\mathrm{~cm} / \mathrm{sec})^{-3}$

Direction of propagation		γ_{L}	v_{L}^{-3}	$\gamma_{\boldsymbol{r 1}}$	$v_{\tau 1}^{-3}$	$\gamma_{\tau 2}$	$v_{\tau 2}^{-3}$
$\mathrm{Si}^{\text {a }}$	[100]	$1 \cdot 37$	(1.64)	$0 \cdot 33$	(5.01)	$0 \cdot 33$	(5.01)
	[110]	$1 \cdot 33$	(1.30)	$0 \cdot 33$	(5.01)	-0.12	(9.76)
	[111]	$1 \cdot 32$	(1.21)	$0 \cdot 08$	(7.47)	0.08	(7-47)
$\mathrm{Ge}^{\text {b }}$	[100]	1.29	(8.39)	0.584	(22.4)	$0 \cdot 584$	(22.4)
	[110]	1.28	(6.33)	0.584	(22.4)	$0 \cdot 170$	(48.1)
	[111]	$1 \cdot 27$	(5.78)	$0 \cdot 360$	(35.9)	$0 \cdot 36$	(35.9)
$\mathrm{Na}^{\text {c }}$	[100]	$1 \cdot 51$	(47-7)	1.06	(111)	1.06	(111)
	[110]	$1 \cdot 36$	(26.2)	1.06	(111)	1.06	(2138)
	[111]	$1 \cdot 34$	(22.5)	1.06	(400)	1.06	(400)
$\mathrm{Cu}^{\text {d }}$	[100]	$2 \cdot 48$	(13.4)	1.92	(41-4)	1.92	(41.4)
	[110]	$2 \cdot 30$	(8.8)	$1 \cdot 92$	(41.4)	$1 \cdot 49$	(243)
	[111]	$2 \cdot 19$	(7-8)	1.76	(105)	1.76	(105)
$\mathrm{Ag}^{\text {d }}$	[100]	2.71	(25)	$2 \cdot 38$	(108)	$2 \cdot 38$	(108)
	[110]	$2 \cdot 69$	(17.7)	$2 \cdot 38$	(108)	$1 \cdot 96$	(569)
	[111]	$2 \cdot 68$	(16.0)	$2 \cdot 21$	(263)	$2 \cdot 21$	(263)
$\mathrm{Au}^{\text {d }}$	[100]	$2 \cdot 86$	(31.9)	$3 \cdot 38$	(312)	$3 \cdot 38$	(312)
	[110]	3.00	(26.1)	$3 \cdot 38$	(312)	$2 \cdot 31$	(1500)
	[111]	3.03	(24.6)	$2 \cdot 94$	(731)	$2 \cdot 94$	(731)
$\mathrm{Al}^{\text {e }}$	[100]	$2 \cdot 28$	(3.97)	$2 \cdot 80$	(29.3)	$2 \cdot 80$	(29.3)
	[110]	2.43	(8.61)	$2 \cdot 80$	(29.3)	$2 \cdot 36$	(39.5)
	[111]	$2 \cdot 43$	(3.63)	$2 \cdot 53$	(35.6)	$2 \cdot 53$	(35.6)
$\mathrm{NaCl}^{\text {f }}$	[100]	2.64	(9•81)	$0 \cdot 14$	(72-2)	$0 \cdot 14$	(72-2)
	[110]	1.87	(11.55)	$0 \cdot 14$	(72-2)	$2 \cdot 72$	(43.8)
	[111]	$1 \cdot 57$	(12.26)	$2 \cdot 04$	(50.9)	$2 \cdot 04$	(50.9)
	optic	$1 \cdot 20$		$3 \cdot 61$		3.61	
$\mathrm{KCl}^{\text {f }}$	[100]	$2 \cdot 18$	(11.33)	-0.74	(184)	-0.74	(184)
	[110]	1.42	(17.9)	-0.74	(184)	$2 \cdot 42$	(41-9)
	[111]	1.04	(21.6)	$1 \cdot 92$	(59.5)	$1 \cdot 92$	(59.5)
	optic	0.74		$2 \cdot 61$		$2 \cdot 61$	
RbI ${ }^{\text {g }}$	[100]	$2 \cdot 53$	(54-3)	-1.06	(1447)	-1.06	(1447)
	[110]	$1 \cdot 91$	(98.4)	-1.06	(1447)	$2 \cdot 56$	(186)
	[111]	1.54	(128)	$2 \cdot 15$	(273)	$2 \cdot 15$	(273)

a. Chapman J. C., Master thesis, Case Institute of Technology (1959), unpublished.
b. McShimmin H.J., J. acoust. Soc. Amer. 30, 314 (1957).
c. Daniels W.B., Phys. Rev. 119, 1246 (1960).
d. Daniels W.B. and Smith Charles S., Phys. Rev. 111, 713 (1958).
e. Schmunck R.E. and Smith Charles S., J. Phys. Chem. Solids 9, 100 (1959).
f. Data prepared by Smith C.S. from Lazarus D., Phys. Rev. 76, 545 (1949).
g. Daniels W.B., Princeton University-unpublished.

